
White Paper

A Flexible Architecture for Fisheye Correction in Automotive
Rear-View Cameras
Introduction
Fisheye cameras are finding an increasing number of applications in automobile rear-view imaging systems due to
their ultra-wide-angle properties and cost-effectiveness. However, while fisheye lenses (1) provide very large
wide-angle views (theoretically the entire frontal hemispheric view of 180°) the images produced suffer from severe
distortion as a result of the hemispherical scene being projected onto a flat surface.

For a viewer of fisheye images, such distortion can be both unusual and confusing. Therefore, it is desirable that the
images captured by fisheye cameras be corrected to approximately rectilinear versions before being presented to
viewers in applications such as automobile rear-view cameras. For cases where the basic camera parameters are
known, correcting fisheye distortion is relatively straightforward mathematically. However, given the intensive
computations involved, it cannot be easily implemented on a FPGA. This paper discusses an innovative architecture
developed by Altera and Manipal Dot Net (MDN) to perform fisheye correction on a FPGA when basic camera
parameters are known.

Fisheye Distortion and Mapping Functions
Fisheye lenses achieve extremely wide fields of view (FOVs) by foregoing the perspective (rectilinear) mapping
common to non-fisheye lenses and opting instead for a special mapping (e.g., equisolid angle) that gives images the
characteristic convex appearance shown in Figure 1 (left). The radial distortion caused by fisheye mappings is one in
which image magnification decreases with distance from the optical axis. Also known as “barrel distortion,” the
apparent effect is that of an image that has been mapped around a sphere. As result, fisheye images do not preserve
the most important feature of rectilinear images, which is that they map straight lines in the scene onto straight lines
in the image. There are two kinds of fisheye images:

■ Circular (hemispherical) fisheye images are formed when the entire hemispherical view is projected onto a circle
within the film frame. In other words, the image circle is inscribed in the film or sensor area. These have a 180°
angle of view along the vertical and the horizontal directions as shown in Figure 1(left).

■ Full-frame fisheye images are formed when the hemispherical image is circumscribed around the film or sensor
area as depicted in Figure 1 (right). These have a 180° angle of view along the diagonal, while the horizontal and
vertical angles of view are smaller.

Figure 1. Fisheye Images—Circular (left) and Full-Frame (right)

October 2008, ver. 1.2 1

WP-01073-1.2

A Flexible Architecture for Fisheye Correction in Automotive Rear-View Cameras Altera Corporation
Clearly, a circular fisheye can be made full-frame if it is captured with a smaller sensor or film size. A fisheye lens is
characterized by two basic parameters: the focal length and the FOV. In a fisheye camera, the parameters are related
for a given sensor or film size. Different fisheye lenses distort images differently and the nature of the distortion is
defined by their mapping function.

If θ is the angle between a point in the real world and the optical axis, which goes from the center of the image
through the center of the lens, the radial position R of a point on the image is related to θ and to the focal length f of
the lens for different mapping functions (2):

■ Perspective projection (normal, non-fisheye lens): R = f tan(θ). This simply works like a pinhole camera and is
the basis for the rectilinear distortion-free mapping of normal cameras as shown in Figure 2 (left).

■ Linear scaled (equidistant): R = fθ, where θ is in radians as shown in Figure 2 (right). This is the simplest mapping
function for a fisheye lens and it clearly indicates that for a fisheye lens, the radial position of a point on the film
is different from that of a perspective mapping and thus is shifted to a different position.

Figure 2. Perspective Projection (left) and Linear-Scaled Projection (right)

Similarly, other mapping functions for fisheye lens are possible:

■ Equisolid angle: R = 2fsin(θ/2). This popular mapping function is assumed for our analysis.
■ Orthographic: R = fsin(θ).
■ Stereographic (conform): R = 2ftan(θ/2).

Algorithm Description
As described above, the radial position of a point in a fisheye image (Rf) is different from that in a perspective image
(Rp). Therefore, the task of correcting a distorted fisheye image is one of finding a relationship between Rp and Rf.
This is found by solving for the unknowns in the two equations defining the perspective mapping and the fisheye
mapping. Since solving those equations involves the computation of trigonometric functions, this is a difficult task to
implement on an FPGA.

Altera and MDN have developed a novel method that simplifies the procedure for correcting a distorted fisheye
image. The basic idea is based on the observation that the relationship between Rp and Rf is completely determined by
the camera geometry, i.e., the focal length (f) and the FOV. This implies that it can be pre-computed and stored in the
form of a look-up table (LUT). The FPGA’s task then is to use the LUT to map the pixels of the distorted fisheye
input image to that of the corrected output image. Since this involves sub-pixel rendering, the method requires the
FPGA perform some form of pixel interpolation. The 9-point interpolation method, a simple and very efficient form
of pixel interpolation, produces a tolerable and distortion-free output image.

2

Altera Corporation A Flexible Architecture for Fisheye Correction in Automotive Rear-View Cameras
Computation of the LUT
With the input frame captured by the fisheye camera denoted as the source image and the corrected output as the
target image, the task of correcting the source fisheye distorted image can be defined as follows: For every pixel
location in the target image, compute its corresponding pixel location in the source image(3).

Let xp and yp be the x and y coordinates, respectively, of a target pixel in the output perspective (rectilinear) image,
and similarly, let xf and yf be those of a source pixel in the input fisheye image. Then assuming an equisolid angle
mapping for the fisheye image, the following equations hold true:

where Rp is the radial position of a pixel on the perspective image from the center and Rf is the radial position of a
pixel on the fisheye image from the center. Assuming the center of the image corresponds to the center of the fisheye
lens and eliminating θ between the above three equations gives:

where and f is the focal length in pixels, which can be calculated as .

Thus for every target pixel, the corresponding pixel location in the fisheye image can be computed and stored in the
form of an LUT. All parameters needed for LUT generation are known beforehand, such as the imager characteristics
(including imager FOV and size of the input frame) and display system characteristics (including the display size).
Therefore for a given imager and display system, the LUT is computed only once and off-line.

In Figure 3 left and right, the results of correcting the fisheye images of Figure 1 left and right, respectively, are
shown. Note that to get a corrected fisheye image with a 180° FOV along some direction requires that the size of the
corrected image be infinite. Since this is impossible, the FOV of the target is restricted to less than 180°. In the case of
a full-frame fisheye image, where the FOV of the source image along horizontal and vertical directions is less than
180°, if the FOV of the target image is greater than that of the source fisheye, then points outside the FOV of the
source image are rendered black. This produces the characteristic “bow tie” effect in which the corners are stretched
out as depicted in Figure 3 (right). This can be avoided by ensuring that the FOV of the target is always sufficiently
smaller than that of the source fisheye.

Figure 3. Fisheye-Corrected Images—Circular (left) and Full-Frame (right)

Rf 2f θ 2⁄()sin=

Rp f θ()tan=

xp yp⁄ xf yf⁄=

xf
2xp

1–tan(sin λ 2⁄())
λ

---=

yf
2yp

1–tan(sin λ 2⁄())
λ

---=

λ x2
p y2

p+⎝ ⎠
⎛ ⎞2

⎝ ⎠
⎛ ⎞ f⁄= f image_width

4 FOVhorz 2⁄()sin---=

3

A Flexible Architecture for Fisheye Correction in Automotive Rear-View Cameras Altera Corporation
9-Point Interpolation
As detailed in the previous section, the LUT can provide a source pixel location for every target pixel location.
However, since the source pixel location can be a real number, using it to compute the actual pixel values of the target
image requires some form of pixel interpolation. In addition, an LUT with real values (needing floating-point
representations) will become unwieldy for an FPGA. However, the 9-point interpolation scheme addresses these
issues by providing a simple and efficient method for pixel interpolation that also avoids the storage of real numbers
in the LUT.

Alternate methods for pixel interpolation are less successful. The “nearest neighbor” interpolation is a simple and fast
method for computation, but is also somewhat coarse and can lead to visible image artifacts. More complex
interpolation techniques such as bilinear interpolation involve floating-point operations that the FPGA is not suited to
handle efficiently. The 9-point interpolation scheme—a middle path between the nearest neighbor and bilinear
interpolation schemes—involves mapping the LUT’s real-valued pixel to the nearest of its nine neighbors, as shown
in Figure 4.

Figure 4. The 9-Point Interpolation Scheme

In this method, the intensity values of all fictitious pixels are calculated by taking the average of the intensities of its
adjacent actual pixels. For example, the color intensity of the pixel (x, y+0.5) is the average of the color intensities of
the actual pixels (x, y) and (x, y+1). The intensity value of (x+0.5, y+0.5) is the average of the intensities of the actual
pixels (x, y), (x+1, y), (x, y+1) and (x+1, y+1).

The main advantage this technique possesses over the two formerly discussed methods is simplified computation
without significant sacrifice in the quality of the corrected image. This is because the only computation involved is
taking the averages of either two or four quantities. Division by two can be realized by “right-shifting” the sum of the
numbers by one bit, while division by four can be done by right-shifting the sum by two bits. This sort of computation
is very simple for an FPGA.

Note that with the 9-point interpolation scheme, there is no need for the LUT to store any real-valued pixel locations.
It can directly store the location of either the actual or the fictitious pixel to which the real-valued pixel is mapped.
This can be easily achieved with fixed-point representations.
4

Altera Corporation A Flexible Architecture for Fisheye Correction in Automotive Rear-View Cameras
Design Implementation
This section discusses the implementation of the fisheye correction using devices from the Altera® Cyclone® FPGA
series and the Nios® II soft-core embedded processors. The Nios II architecture is a RISC soft-core architecture,
which is implemented entirely in the programmable logic and memory blocks of Altera FPGAs, and is capable of
handling a wide range of embedded computing applications, from DSP to system control. The soft-core nature of the
Nios II processor lets the system designer specify and generate a custom Nios II core, tailored for his specific
application requirements. Altera’s Nios II Embedded Evaluation Kit (NEEK) is used as the development platform.

As shown in Figure 5, the hardware architecture is based on the following: Nios II soft-core embedded processor, a
BT-656 video input module, an I2C configuration module, a DDR-SDRAM controller, and a LCD controller.

Figure 5. Internal Architecture

BT-656 Video Input Module
The BT-656 video input module, which is designed to be compatible with the ITU-R BT.656 digital video standard, is
responsible for color space conversion (CSC), clipping, de-interlacing, scaling, and a 24-bit RGB pack. Each
operation is performed sequentially (as shown in Figure 6) and is parameterized by registers controlled by the Nios II
processor. Optionally, the video inputs may be clipped and scaled (up or down) depending on the desired output
format. The registers allow the system to be customized for various display resolutions and input video formats such
as NTSC, PAL, or SECAM. Video data from the module is transferred via a direct memory access (DMA) channel to
an external SDRAM frame buffer.

Figure 6. Video Input Module

Video Input Configuration Module
The I2C configuration module is used to configure the video decoder, Analog Devices IC ADV7180, in the desired
format (4), (5). The ADV7180 provides its output in an 8-bit ITU-R BT.656 YCrCb 4:2:2 digital video standard.
5

A Flexible Architecture for Fisheye Correction in Automotive Rear-View Cameras Altera Corporation
LCD Controller
The LCD controller uses the scatter-gather algorithm to achieve faster data transfer without processor overhead
becoming a limiting factor. As shown in Figure 7, the LCD SGDMA takes in data from the external SDRAM frame
buffer and sends it to the FIFO that is used to implement a dual port RAM for adjusting data rates suitable for the
LCD peripheral. The pixel converter and data format adapter modify the data according to LCD display system
specifications. The video sync generator takes in the formatted data, generates the appropriate clock signals, and
sends the data for display.

Figure 7. LCD Controller

Memory Requirement and Management
There is continuous data input from the camera and this requires quick real-time processing for optimum throughput.
Effective memory management becomes critical for storing and retrieving image and additional processing data
required for fisheye correction. The architecture uses the available memory resources on the NEEK for the input
frame buffer, output frame buffer, and for storing and reading the static LUT. All these memory functions are
performed using control signals sent from the CPU to the SDR controller. The SDR controller connects to the
SDRAM chip and handles all SDRAM protocol requirements.

Input frame buffer
This is implemented on the fast SS RAM. The input from the video decoder IC comes in a 16-bit interlaced RGB565
format, which requires 2 bytes per pixel. The resolution of the input camera used is 656×492 pixels. Hence, the
amount of memory to be reserved for a single input frame is:

Output frame buffer
Implemented on the SDRAM, the buffer size depends on the resolution of the display. The NEEK display screen has
a display resolution of 800×480 pixels, and the output format is also RGB565, so the amount of memory to be
reserved for an output frame is:

Storing and reading the static LUT
The LUT must be generated externally from the known camera and display parameters each time an image is
corrected after power up. Hence, it must be present on the NEEK. Since the RAM cannot be used for permanent
storage of the static LUT, the non-volatile CFI flash memory must be used. Since the flash memory has a high access
time, the LUT is copied onto the RAM block in order to achieve the desired computational speed.

The LUT contains the pixel coordinates (obtained using 9-point interpolation) of the source image for every pixel of
the target image. Accordingly, it can contain either integer values or decimal values up to 0.5 denominations,
depending on whether the mapped source pixel is an actual or a fictitious pixel, respectively (as discussed in “9-Point
Interpolation”). In other words, the LUT values either can be x or (x+0.5) (where x is an integer), or y or (y+0.5)
(where y is an integer). However, two requirements must be met while storing the LUT:

■ Avoid storing and computing with floating point values while representing the LUT
■ Since the input image is obtained in an interlaced format consisting of even and odd fields, to maximize speed,

process the image as is, i.e., without having to de-interlace the input.

width of input image height of input image× bytes per pixel× 656 492× 2 bytes× 630.375 Kbytes= =

width of output image height of output image× bytes per pixel× 800 480× 2 bytes× 750 Kbytes= =
6

Altera Corporation A Flexible Architecture for Fisheye Correction in Automotive Rear-View Cameras
To meet the first requirement, note that the integral part of the x and y coordinates of the 9-point interpolated pixel
will always correspond to an actual source image pixel. The second requirement is met by computing a proper offset
while generating the LUT and during run time, so that any mapped (actual) source pixel can be located directly on the
interlaced input image. Therefore, each LUT entry can be represented using a 32-bit data type as follows:

■ The first 29 most significant bits (MSBs) encode the integral parts of the x and y coordinates of the 9-point
interpolated pixel on the interlaced source image.

■ The third least significant bit (LSB) denotes whether the pixel position lies in the even field (bit value “0”) or the
odd field (bit value “1”).

■ The second LSB denotes whether the x coordinate is an integer value (bit value “0”) or floating value (bit value
“1”).

■ The LSB denotes whether the y coordinate is integer value (bit value “0”) or floating value (bit value “1”).

This scheme allows us to store the LUT much more efficiently than if they were stored as floating-point values in the
CFI flash memory. The size of the LUT depends on the output frame size. Since the LUT needs 4 bytes (32 bits) of
storage for each output pixel, so the amount of memory to be reserved for storing the LUT is:

Generating the Output Frame
The LUT is indexed by the pixels of the output frame and its values are the coordinates of the pixels of the input
frame the intensity of which must be assigned to or used to compute the corresponding pixel intensities of the output
frame. It can be determined whether the LUT entry corresponds to actual or fictitious pixels by checking its LSB and
second LSB. A high bit value represents an actual pixel and a low bit value represents a fictitious pixel. Then the
RGB565 intensities are assigned to the pixels of the output frame using 9-point interpolation, which involves either
direct assignment (in the case of an actual pixel) or appropriate averaging (in the case of a fictitious pixel) to
determine the output pixel intensities. The following pseudo code illustrates this method.

DETERMINE memory size of LUT by width of display × height of display × 4 bytes

ASSIGN memory for static LUT on SDRAM

OPEN flash memory device

COPY the static LUT from flash memory to SDRAM

CLOSE the flash memory device

COMPUTING THE OUPTUT FRAME

FOR each row of the output image

FOR each column of the output image

OBTAIN the value of pixel position (right-shifting the LUT by 3 bits) from the static
LUT

IF pixel location is INVALID THEN

ASSIGN output pixel as BLACK

ELSE

IF pixel location represents REAL pixel THEN

ASSIGN the output pixel with the corresponding input pixel intensity value

ELSE IF pixel location represents FICTITIOUS pixel THEN

COMPUTE the average intensity of the nearest actual input pixels depending on
whether field is even or odd

ASSIGN the value to the output pixel

ENDIF

ENDIF

ENDFOR

ENDFOR

DISPLAYING THE FRAME

ASSIGN the screen buffer with the computed output frame

width of output image height of output image× bytes per LUT data× 800 480× 4 bytes× 1500 Kbytes= =
7

A Flexible Architecture for Fisheye Correction in Automotive Rear-View Cameras Altera Corporation
Copyright © 2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device
designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service
marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products
are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its
semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and
services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive
San Jose, CA 95134
www.altera.com

Conclusions
Using FPGAs and soft-core embedded processor technology, Altera and MDN have developed a novel architecture
for fisheye correction in wide-angle cameras. This architecture is flexible, scalable, and makes efficient use of the
FPGA’s resources. Because the architecture’s Nios II processor is versatile and powerful enough to take on additional
embedded processor functions, this technology is ideally suited for use in applications where wide-angle cameras are
used, such as automotive rear-view cameras and others.

References
1. “Fisheye lens,” Wikipedia:

http://en.wikipedia.org/wiki/Fisheye_lens
2. Transformations and Projections in Computer Graphics, David Salomon, Springer, 2006.
3. Nios II Processor Reference Handbook:

www.altera.com/literature/lit-nio2.jsp
4. Nios II Embedded Evaluation Kit, Cyclone® III Edition, User Guide:

www.altera.com/literature/ug/niosii_eval_user_guide.pdf
5. Nios II Flash Programmer User Guide:

www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

Further Information
■ Implementing a Flexible CPLD-Only Digital Dashboard for Automobiles:

www.altera.com/literature/wp/wp-01072-implementing-flexible-cpld-only-digital-dashboard-automobiles.pdf
■ Creating Low-Cost Intelligent Display Modules With an FPGA and Embedded Processor:

www.altera.com/literature/wp/wp-01074-creating-low-cost-intelligent-display-modules-with-fpga.pdf
■ Applying Graphics to FPGA-Based Solutions:

www.altera.com/literature/wp/wp-01075-applying-graphics-to-fpga-based-solutions.pdf
■ Using LEDs as Light-Level Sensors and Emitters:

www.altera.com/literature/wp/wp-01076-leds-as-light-level-sensors-and-emitters.pdf

www.manipal.net
8

	Introduction
	Fisheye Distortion and Mapping Functions
	Algorithm Description
	Computation of the LUT
	9-Point Interpolation

	Design Implementation
	BT-656 Video Input Module
	Video Input Configuration Module
	LCD Controller
	Memory Requirement and Management
	Input frame buffer
	Output frame buffer
	Storing and reading the static LUT

	Generating the Output Frame

	Conclusions
	References
	Further Information

