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A Flexible Architecture for Fisheye Correction in Automotive
Rear-View Cameras
Introduction
Fisheye cameras are finding an increasing number of applications in automobile rear-view imaging systems due to 
their ultra-wide-angle properties and cost-effectiveness. However, while fisheye lenses (1) provide very large 
wide-angle views (theoretically the entire frontal hemispheric view of 180°) the images produced suffer from severe 
distortion as a result of the hemispherical scene being projected onto a flat surface. 

For a viewer of fisheye images, such distortion can be both unusual and confusing. Therefore, it is desirable that the 
images captured by fisheye cameras be corrected to approximately rectilinear versions before being presented to 
viewers in applications such as automobile rear-view cameras. For cases where the basic camera parameters are 
known, correcting fisheye distortion is relatively straightforward mathematically. However, given the intensive 
computations involved, it cannot be easily implemented on a FPGA. This paper discusses an innovative architecture 
developed by Altera and Manipal Dot Net (MDN) to perform fisheye correction on a FPGA when basic camera 
parameters are known.

Fisheye Distortion and Mapping Functions
Fisheye lenses achieve extremely wide fields of view (FOVs) by foregoing the perspective (rectilinear) mapping 
common to non-fisheye lenses and opting instead for a special mapping (e.g., equisolid angle) that gives images the 
characteristic convex appearance shown in Figure 1 (left). The radial distortion caused by fisheye mappings is one in 
which image magnification decreases with distance from the optical axis. Also known as “barrel distortion,” the 
apparent effect is that of an image that has been mapped around a sphere. As result, fisheye images do not preserve 
the most important feature of rectilinear images, which is that they map straight lines in the scene onto straight lines 
in the image. There are two kinds of fisheye images:

■ Circular (hemispherical) fisheye images are formed when the entire hemispherical view is projected onto a circle 
within the film frame. In other words, the image circle is inscribed in the film or sensor area. These have a 180° 
angle of view along the vertical and the horizontal directions as shown in Figure 1(left).

■ Full-frame fisheye images are formed when the hemispherical image is circumscribed around the film or sensor 
area as depicted in Figure 1 (right). These have a 180° angle of view along the diagonal, while the horizontal and 
vertical angles of view are smaller.

Figure 1. Fisheye Images—Circular (left) and Full-Frame (right)
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Clearly, a circular fisheye can be made full-frame if it is captured with a smaller sensor or film size. A fisheye lens is 
characterized by two basic parameters: the focal length and the FOV. In a fisheye camera, the parameters are related 
for a given sensor or film size. Different fisheye lenses distort images differently and the nature of the distortion is 
defined by their mapping function.

If θ is the angle between a point in the real world and the optical axis, which goes from the center of the image 
through the center of the lens, the radial position R of a point on the image is related to θ and to the focal length f of 
the lens for different mapping functions (2):

■ Perspective projection (normal, non-fisheye lens): R = f tan(θ). This simply works like a pinhole camera and is 
the basis for the rectilinear distortion-free mapping of normal cameras as shown in Figure 2 (left).

■ Linear scaled (equidistant): R = fθ, where θ is in radians as shown in Figure 2 (right). This is the simplest mapping 
function for a fisheye lens and it clearly indicates that for a fisheye lens, the radial position of a point on the film 
is different from that of a perspective mapping and thus is shifted to a different position.

Figure 2. Perspective Projection (left) and Linear-Scaled Projection (right)

Similarly, other mapping functions for fisheye lens are possible:

■ Equisolid angle: R = 2fsin(θ/2). This popular mapping function is assumed for our analysis.
■ Orthographic: R = fsin(θ).
■ Stereographic (conform): R = 2ftan(θ/2).

Algorithm Description
As described above, the radial position of a point in a fisheye image (Rf) is different from that in a perspective image 
(Rp). Therefore, the task of correcting a distorted fisheye image is one of finding a relationship between Rp and Rf. 
This is found by solving for the unknowns in the two equations defining the perspective mapping and the fisheye 
mapping. Since solving those equations involves the computation of trigonometric functions, this is a difficult task to 
implement on an FPGA.

Altera and MDN have developed a novel method that simplifies the procedure for correcting a distorted fisheye 
image. The basic idea is based on the observation that the relationship between Rp and Rf is completely determined by 
the camera geometry, i.e., the focal length (f) and the FOV. This implies that it can be pre-computed and stored in the 
form of a look-up table (LUT). The FPGA’s task then is to use the LUT to map the pixels of the distorted fisheye 
input image to that of the corrected output image. Since this involves sub-pixel rendering, the method requires the 
FPGA perform some form of pixel interpolation. The 9-point interpolation method, a simple and very efficient form 
of pixel interpolation, produces a tolerable and distortion-free output image.
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Computation of the LUT
With the input frame captured by the fisheye camera denoted as the source image and the corrected output as the 
target image, the task of correcting the source fisheye distorted image can be defined as follows: For every pixel 
location in the target image, compute its corresponding pixel location in the source image(3).

Let xp and yp be the x and y coordinates, respectively, of a target pixel in the output perspective (rectilinear) image, 
and similarly, let xf and yf be those of a source pixel in the input fisheye image. Then assuming an equisolid angle 
mapping for the fisheye image, the following equations hold true:

where Rp is the radial position of a pixel on the perspective image from the center and Rf is the radial position of a 
pixel on the fisheye image from the center. Assuming the center of the image corresponds to the center of the fisheye 
lens and eliminating θ between the above three equations gives:

where  and f is the focal length in pixels, which can be calculated as .

Thus for every target pixel, the corresponding pixel location in the fisheye image can be computed and stored in the 
form of an LUT. All parameters needed for LUT generation are known beforehand, such as the imager characteristics 
(including imager FOV and size of the input frame) and display system characteristics (including the display size). 
Therefore for a given imager and display system, the LUT is computed only once and off-line.

In Figure 3 left and right, the results of correcting the fisheye images of Figure 1 left and right, respectively, are 
shown. Note that to get a corrected fisheye image with a 180° FOV along some direction requires that the size of the 
corrected image be infinite. Since this is impossible, the FOV of the target is restricted to less than 180°. In the case of 
a full-frame fisheye image, where the FOV of the source image along horizontal and vertical directions is less than 
180°, if the FOV of the target image is greater than that of the source fisheye, then points outside the FOV of the 
source image are rendered black. This produces the characteristic “bow tie” effect in which the corners are stretched 
out as depicted in Figure 3 (right). This can be avoided by ensuring that the FOV of the target is always sufficiently 
smaller than that of the source fisheye.

Figure 3. Fisheye-Corrected Images—Circular (left) and Full-Frame (right)
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9-Point Interpolation
As detailed in the previous section, the LUT can provide a source pixel location for every target pixel location. 
However, since the source pixel location can be a real number, using it to compute the actual pixel values of the target 
image requires some form of pixel interpolation. In addition, an LUT with real values (needing floating-point 
representations) will become unwieldy for an FPGA. However, the 9-point interpolation scheme addresses these 
issues by providing a simple and efficient method for pixel interpolation that also avoids the storage of real numbers 
in the LUT.

Alternate methods for pixel interpolation are less successful. The “nearest neighbor” interpolation is a simple and fast 
method for computation, but is also somewhat coarse and can lead to visible image artifacts. More complex 
interpolation techniques such as bilinear interpolation involve floating-point operations that the FPGA is not suited to 
handle efficiently. The 9-point interpolation scheme—a middle path between the nearest neighbor and bilinear 
interpolation schemes—involves mapping the LUT’s real-valued pixel to the nearest of its nine neighbors, as shown 
in Figure 4.

Figure 4. The 9-Point Interpolation Scheme

In this method, the intensity values of all fictitious pixels are calculated by taking the average of the intensities of its 
adjacent actual pixels. For example, the color intensity of the pixel (x, y+0.5) is the average of the color intensities of 
the actual pixels (x, y) and (x, y+1). The intensity value of (x+0.5, y+0.5) is the average of the intensities of the actual 
pixels (x, y), (x+1, y), (x, y+1) and (x+1, y+1).

The main advantage this technique possesses over the two formerly discussed methods is simplified computation 
without significant sacrifice in the quality of the corrected image. This is because the only computation involved is 
taking the averages of either two or four quantities. Division by two can be realized by “right-shifting” the sum of the 
numbers by one bit, while division by four can be done by right-shifting the sum by two bits. This sort of computation 
is very simple for an FPGA.

Note that with the 9-point interpolation scheme, there is no need for the LUT to store any real-valued pixel locations. 
It can directly store the location of either the actual or the fictitious pixel to which the real-valued pixel is mapped. 
This can be easily achieved with fixed-point representations.
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Design Implementation
This section discusses the implementation of the fisheye correction using devices from the Altera® Cyclone® FPGA 
series and the Nios® II soft-core embedded processors. The Nios II architecture is a RISC soft-core architecture, 
which is implemented entirely in the programmable logic and memory blocks of Altera FPGAs, and is capable of 
handling a wide range of embedded computing applications, from DSP to system control. The soft-core nature of the 
Nios II processor lets the system designer specify and generate a custom Nios II core, tailored for his specific 
application requirements. Altera’s Nios II Embedded Evaluation Kit (NEEK) is used as the development platform.

As shown in Figure 5, the hardware architecture is based on the following: Nios II soft-core embedded processor, a 
BT-656 video input module, an I2C configuration module, a DDR-SDRAM controller, and a LCD controller.

Figure 5. Internal Architecture

BT-656 Video Input Module
The BT-656 video input module, which is designed to be compatible with the ITU-R BT.656 digital video standard, is 
responsible for color space conversion (CSC), clipping, de-interlacing, scaling, and a 24-bit RGB pack. Each 
operation is performed sequentially (as shown in Figure 6) and is parameterized by registers controlled by the Nios II 
processor. Optionally, the video inputs may be clipped and scaled (up or down) depending on the desired output 
format. The registers allow the system to be customized for various display resolutions and input video formats such 
as NTSC, PAL, or SECAM. Video data from the module is transferred via a direct memory access (DMA) channel to 
an external SDRAM frame buffer.

Figure 6. Video Input Module

Video Input Configuration Module
The I2C configuration module is used to configure the video decoder, Analog Devices IC ADV7180, in the desired 
format (4), (5). The ADV7180 provides its output in an 8-bit ITU-R BT.656 YCrCb 4:2:2 digital video standard.
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LCD Controller
The LCD controller uses the scatter-gather algorithm to achieve faster data transfer without processor overhead 
becoming a limiting factor. As shown in Figure 7, the LCD SGDMA takes in data from the external SDRAM frame 
buffer and sends it to the FIFO that is used to implement a dual port RAM for adjusting data rates suitable for the 
LCD peripheral. The pixel converter and data format adapter modify the data according to LCD display system 
specifications. The video sync generator takes in the formatted data, generates the appropriate clock signals, and 
sends the data for display.

Figure 7. LCD Controller

Memory Requirement and Management
There is continuous data input from the camera and this requires quick real-time processing for optimum throughput. 
Effective memory management becomes critical for storing and retrieving image and additional processing data 
required for fisheye correction. The architecture uses the available memory resources on the NEEK for the input 
frame buffer, output frame buffer, and for storing and reading the static LUT. All these memory functions are 
performed using control signals sent from the CPU to the SDR controller. The SDR controller connects to the 
SDRAM chip and handles all SDRAM protocol requirements.

Input frame buffer
This is implemented on the fast SS RAM. The input from the video decoder IC comes in a 16-bit interlaced RGB565 
format, which requires 2 bytes per pixel. The resolution of the input camera used is 656×492 pixels. Hence, the 
amount of memory to be reserved for a single input frame is:

Output frame buffer
Implemented on the SDRAM, the buffer size depends on the resolution of the display. The NEEK display screen has 
a display resolution of 800×480 pixels, and the output format is also RGB565, so the amount of memory to be 
reserved for an output frame is:

Storing and reading the static LUT
The LUT must be generated externally from the known camera and display parameters each time an image is 
corrected after power up. Hence, it must be present on the NEEK. Since the RAM cannot be used for permanent 
storage of the static LUT, the non-volatile CFI flash memory must be used. Since the flash memory has a high access 
time, the LUT is copied onto the RAM block in order to achieve the desired computational speed.

The LUT contains the pixel coordinates (obtained using 9-point interpolation) of the source image for every pixel of 
the target image. Accordingly, it can contain either integer values or decimal values up to 0.5 denominations, 
depending on whether the mapped source pixel is an actual or a fictitious pixel, respectively (as discussed in “9-Point 
Interpolation”). In other words, the LUT values either can be x or (x+0.5) (where x is an integer), or y or (y+0.5) 
(where y is an integer). However, two requirements must be met while storing the LUT: 

■ Avoid storing and computing with floating point values while representing the LUT
■ Since the input image is obtained in an interlaced format consisting of even and odd fields, to maximize speed, 

process the image as is, i.e., without having to de-interlace the input.

width of input image height of input image× bytes per pixel× 656 492× 2 bytes× 630.375 Kbytes= =

width of output image height of output image× bytes per pixel× 800 480× 2 bytes× 750 Kbytes= =
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To meet the first requirement, note that the integral part of the x and y coordinates of the 9-point interpolated pixel 
will always correspond to an actual source image pixel. The second requirement is met by computing a proper offset 
while generating the LUT and during run time, so that any mapped (actual) source pixel can be located directly on the 
interlaced input image. Therefore, each LUT entry can be represented using a 32-bit data type as follows:

■ The first 29 most significant bits (MSBs) encode the integral parts of the x and y coordinates of the 9-point 
interpolated pixel on the interlaced source image.

■ The third least significant bit (LSB) denotes whether the pixel position lies in the even field (bit value “0”) or the 
odd field (bit value “1”).

■ The second LSB denotes whether the x coordinate is an integer value (bit value “0”) or floating value (bit value 
“1”).

■ The LSB denotes whether the y coordinate is integer value (bit value “0”) or floating value (bit value “1”).

This scheme allows us to store the LUT much more efficiently than if they were stored as floating-point values in the 
CFI flash memory. The size of the LUT depends on the output frame size. Since the LUT needs 4 bytes (32 bits) of 
storage for each output pixel, so the amount of memory to be reserved for storing the LUT is:

Generating the Output Frame
The LUT is indexed by the pixels of the output frame and its values are the coordinates of the pixels of the input 
frame the intensity of which must be assigned to or used to compute the corresponding pixel intensities of the output 
frame. It can be determined whether the LUT entry corresponds to actual or fictitious pixels by checking its LSB and 
second LSB. A high bit value represents an actual pixel and a low bit value represents a fictitious pixel. Then the 
RGB565 intensities are assigned to the pixels of the output frame using 9-point interpolation, which involves either 
direct assignment (in the case of an actual pixel) or appropriate averaging (in the case of a fictitious pixel) to 
determine the output pixel intensities. The following pseudo code illustrates this method.

DETERMINE memory size of LUT by width of display × height of display × 4 bytes

ASSIGN memory for static LUT on SDRAM

OPEN flash memory device

COPY the static LUT from flash memory to SDRAM

CLOSE the flash memory device

COMPUTING THE OUPTUT FRAME

FOR each row of the output image

FOR each column of the output image

OBTAIN the value of pixel position (right-shifting the LUT by 3 bits) from the static 
LUT

IF pixel location is INVALID THEN

ASSIGN output pixel as BLACK

ELSE

IF pixel location represents REAL pixel THEN

ASSIGN the output pixel with the corresponding input pixel intensity value

ELSE IF pixel location represents FICTITIOUS pixel THEN

COMPUTE the average intensity of the nearest actual input pixels depending on 
whether field is even or odd

ASSIGN the value to the output pixel

ENDIF

ENDIF

ENDFOR

ENDFOR

DISPLAYING THE FRAME

ASSIGN the screen buffer with the computed output frame

width of output image height of output image× bytes per LUT data× 800 480× 4 bytes× 1500 Kbytes= =
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Conclusions
Using FPGAs and soft-core embedded processor technology, Altera and MDN have developed a novel architecture 
for fisheye correction in wide-angle cameras. This architecture is flexible, scalable, and makes efficient use of the 
FPGA’s resources. Because the architecture’s Nios II processor is versatile and powerful enough to take on additional 
embedded processor functions, this technology is ideally suited for use in applications where wide-angle cameras are 
used, such as automotive rear-view cameras and others.
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