
 1

Abstract— This paper illustrates the use of the Software

Configurable Processor Array (SCPA) of Stretch Inc., for
accelerating the compute-intensive application of multiple audio
decoding. It discusses the implementation of four Ogg Vorbis
decoders on the SCPA. Vorbis is an open-source, royalty-free
audio codec and the Ogg is a free container format for holding the
encoded data. The SCPA is a processor array system, built by
inter-connecting the software configurable processors (SCP) of
Stretch Inc. The unique feature of the SCP is that the compute
intensive part of the application code can be run on the on-chip
hardware known as ISEF (Instruction Set Extension Fabric). The
computational cost analysis of the Ogg Vorbis decoder identified
the inverse modified discrete cosine transform (IMDCT) as the
most computationally expensive part. We implemented the
IMDCT on the ISEF, thereby speeding up the decoding process.
The SCPA run time environment is utilized to simultaneously
decode four encoded bit streams on the four processors. The PCIe
interface on the SCPA is used to connect to a host personal
computer (PC) for the transfer of encoded and decoded audio
data.

Index Terms—Software Configurable Processor; Instruction Set
Extension Fabric; Ogg Vorbis Tremor Decoder; Modified Discrete
Cosine Transform;

I. INTRODUCTION

 Vorbis is the open-source audio codec by xiph.org and Ogg
is the container format to hold the encoded data [1]. Ogg
Vorbis is a fully open, royalty-free, patent-free audio
compression format for high quality audio (sampling
frequency 44.1 to 48.0KHz, 16 bits/sample, polyphonic) at bit
rates ranging from 16 to 128Kbps/channel.

 Vorbis is a frequency domain audio compression technique
based on the modified discrete cosine transform (MDCT). In
the encoder, the audio data is segmented into blocks of
appropriate size in accordance with the psycho-acoustical
details of the data. The MDCT is applied to the segmented
data and transformed to frequency domain. The transformed
audio is modeled as dot product of a baseline spectrum known
as floor and finer spectrum known as residue. The audio data
thus represented by the floor and residue, is encoded using
entropy coding and vector quantization (VQ). The decoding
process runs the same sequence of operations in reverse order.

 The open source nature of the Ogg Vorbis codec prompted
many decoder implementations in the past, such as the one on
C-based hardware [2] and System-on-a-Chip [3]. In this paper
we report the implementation on an array of software
configurable processor. We show that the compute-intensive
part of the decoder can be run on the on-chip hardware to
accelerate its execution. The multiple processors in the array
are exploited to decode multiple music files simultaneously.

II. S6000 ARCHITECTURE

 The software configurable processor (SCP) of Stretch Inc.,
has been shown to have high performance/price and low
silicon area/performance ratios, making it a desirable
processor for compute-intensive applications [4]. The SCP has
a core made up of Tensilica LX, which is VLIW RISC
architecture. The architecture of the S6000 family of SCP is
shown in Fig.1. The heart of the processor is specialized to do
multiple arithmetic and logic operations in parallel and is
called the Instruction Specific Extension Fabric (ISEF). It is a
reconfigurable piece of hardware embedded in the processor
chip and is made up of 64 multiplication units each capable of
8x16bit multiplication, 4096 arithmetic units and 64KB of
embedded RAM. An application with high computational load
can offload those computations on to the ISEF to accelerate
their execution. Typical examples of intensive computational
algorithm are motion estimation in video coding, transform
and filter operations in audio coding. In a typical application
development flow, the user can identify the computationally
intensive parts of the program by profiling the application
code. The Stretch design tools enable the user to port these
high-processor-cycle-consuming parts of the application code
onto the ISEF, by writing them as Stretch extension functions
in C/C++ language. The use of high-level language to program
algorithms running on ISEF shortens the design time. The
Stretch extension functions thus coded are seen by the SCP as
extension instructions (EI) and are interleaved into the regular
instruction schedule of the application. The operands are
passed to the ISEF through the wide register file or ISEF
RAM. The execution of the EI in the ISEF with its inherent
parallel processing feature accelerates the running of the
application. The relative ease, with which compute-intensive
code can be converted into custom-made processor instruction
running on the on-chip hardware, makes the SCP well suited
for processing of audio, video and multimedia data.

 Software Configurable Processor Array
For Decoding Multiple Ogg Vorbis Audio

Nikhil H, Harishiva B, Niranjan U C
Manipal Dot Net Pvt. Ltd
 Manipal 576 104, India

nikhil.hegde@manipal.net, harishiva.b@manipal.net, niranjan@manipal.net

 2

Fig. 1 The S6000 Family Architecture

 In addition, each S6000 member includes external memory
support with a DDR2-667 SDRAM controller with 16- or 32-
bit interface and an enhanced generic interface bus (GIB) for
FLASH and other memory mapped peripherals. On-chip
memory sub-systems include instruction and data cache, as
well as a 64-kbyte block of SRAM. The 40 DMA controllers
facilitate moving data on and off the devices with minimal
processor interaction. The S6100 family member includes a
four-lane PCIe interface. Other integrated peripherals include
triple speed Ethernet MAC, two multichannel Inter–IC Sound
(I2S) interfaces, two-wire interface (TWI), serial peripheral
interface (SPI), two UARTs, and general purpose I/O (GPIO).

III. SOFTWARE CONFIGURABLE PROCESSOR ARRAY (SCPA)

 The SCPA system comprises four interconnected Software
Configurable Processors as shown in Fig. 2. The SCP has on-
chip array interface module ports for connecting to other
SCPs. These ports do not need any additional glue logic and
transfer data at the rate of 1.2GB/sec in one direction. The
network interface and switch are built in the processor for fast
routing of data. Each PE has a local DDR memory of size
128MB and DMA allows speedy data transfer between local
memories of different PEs. The system is housed on a Board
of compact form-factor and can be inserted into the PCIe slot
of a computer.

 All Stretch devices residing in a Processor Array network
share the same memory map and can collaborate on tasks. The
topology of the network for a particular application is
described within the development tools suite by means of a
simple text file. The described network of devices is
programmed as if it were a single compute resource. A single
executable is then developed for the network and, at boot time,
the master allocates tasks within the network members
according to the distribution assigned by the designer.

Fig .2 Device Connections in SCPA

 Processor Array also provides an emulation mode on the
host platform. An application using SCPA can be built as a
native executable for the host platform, using the emulation
libraries. This aids development and debugging.

 The software tools developed by Stretch Inc., allow easy
implementation of a parallel-computable project on the SCPA.
All the tools are accessible from the Stretch Integrated
Development Environment and a multi-processor application
can be built, debugged and profiled conveniently.

 The SCPA run-time environment is structured for co-
operative multi-processing, where multiple tasks can be run on
multiple PEs simultaneously. The run-time environment has a
rich set of Application Programming Interfaces (API) for task
creation and management; inter-processor and PCIe
communication; and processor-memory management.

 Processor Array API does not support preemptive tasks and
context switching is deterministically controlled by the tasks
themselves. A simple round robin, single-priority scheduler
switches tasks in and out of execution, and tasks may block on
several conditions without wasting CPU time.

 SCPA supports an efficient block transfer mechanism
through what are known as channels and a flexible small
message-passing mechanism through messages. Messages can
be used to send parameters no more than 16 bytes among
processors, while data of larger size are communicated
between processors using channels. A channel needs to be set
up before transmitting any data on it.

 3

IV. OGG VORBIS AUDIO DECODER

 We implemented the fixed-point Ogg Vorbis decoder titled
Tremor on the SCPA. Tremor is available in the libvorbis
library from the xiph.org, which is ported to the SCPA, so that
future changes can be easily incorporated. The Tremor
decoder is mainly made up of two functions: codec set-up
and teardown. The first function sets up the decode engine by
constructing the information, comments and VQ table from the
first three headers of the encoded bitstream. The second
function reads the encoded audio packets recursively and
extracts the floor and residue values. The inverse modified
discrete transform (IMDCT) of the dot product of the floor and
residue values reconstruct the PCM audio samples. In the
SCPA port, the reading of the encoded data is changed from
file I/O to memory I/O. The malloc functions in the original
code were modified to allocate memory on each PE in the
SCPA system. As Stretch SCP is a little endian processor, the
application code was made to run in that mode.

 The IMDCT is the most processor cycle consuming part of
the Tremor decoder [2, 3]. A fast algorithm for computing
IMDCT is proposed in [5], by decomposing it as a number of
butterfly computations. We wrote an ISEF function to do a
butterfly computation, each butterfly accomplishing four
multiplications of four 32-bit arguments. These ISEF butterfly
implementations were plugged into the original IMDCT code.
The operands for the butterflies were packed into the wide
registers and passed to the ISEF. It was seen that the ISEF
pipeline consumes 20 cycles before the butterfly product is
made available. As this latency is unacceptable, different
butterflies working on independent sets of data were identified.
Such butterfly computations were scheduled on the ISEF
continuously and this is known as loop unrolling. After
appropriate loop unrolling and handling of the data through
wide register file, the ISEF-based IMDCT showed 34%
reduction in compute cycles, when run on the SCPA Board.
This result is comparable to those implementations reported in
[2, 3]. The ISEF implemented IMDCT used 768 arithmetic
units out of 4096 and 4096 multiplication units out of 8192.

 The SCPA system we used is made up of four Software
Configurable Processors (Processing Elements, PE), with
interconnections between them. The SCPA uses the PCIe
interface to communicate with the external world. A host PC
connected to the other end of the PCIe sends four Vorbis-
encoded music data to the SCPA Board. The Tremor decoder
engine is programmed as a task to read and decode the
encoded data. The SCPA run-time environment instantiates the
decoder engine task on all the four PEs, each PE decoding one
of the four music data. The decoding task runs simultaneously
on all the PEs, as the encoded data are mutually independent.
Initially, multiple DMA operations on the PCIe bus move the
encoded data from the host PC to individual PEs. After all the
PEs receives data, the decoding begins. Once the decoding is
complete, multiple DMA transfers move decoded data from
the PEs to the host PC. The block diagram of the proposed
decoder system and the flowchart of the program execution are
shown in figures 3 and 4.

Fig. 3 Decoding of Ogg Vorbis Data on SCPA

V. RESULTS

 Four Ogg Vorbis encoded stereo music files were decoded,
each PE decoding one file. The music files were 4 to 5
minutes in duration, of average size 4.2MB and their bit rate
ranged between 115Kbps and 128Kbps. The decoded data
size ranged between 40MB and 53MB. The decoded music
files were played back in the PCM format and were found to
match exactly with the original Ogg Vorbis encoded music.

 The proposed decoder system decoded a 302 seconds long
music file (44.1 KHz, 115Kbps) in 119 seconds, while the
non-ISEF based decoder system took 149 seconds. The music
was stereo with two channels and each decoded PCM sample
per channel was 16 bits wide. The decoding time can be
further reduced by storing the encoded and decoded audio data
in the dataram (dual port RAM) of each PE, instead of the
DDR memory. This would reduce the processor cycles needed
to read and store the data, thereby improving the performance
of the decoder.

Stretch SCPA Board
VRC6016

 Encoded
Data

 Decoded
Data

Music 0

Music 1

Music 2

Music 3

Decoder on PE0

Data Receive
Data Send
On PE0

Decoder on PE1

Decoder on PE2

Decoder on PE3

 Host

SCT Channels

 4

Fig. 4 Ogg Vorbis Decoder Flowchart

Fig. 4 Ogg Vorbis Decoder Flow in SCPA

VI. CONCLUSION

 The details of implementation of four Ogg Vorbis decoders
on the SCPA platform, for decoding four music files were
presented. The original decoder was profiled to identify
compute-intensive parts. The highest compute-intensive part,
namely the IMDCT was programmed to run on the ISEF. The
operands for the ISEF were transferred through wide registers.
The proposed IMDCT computation accelerated the decoding
by 34%. Storing the data in the on-chip RAM can further
enhance the acceleration factor. It was shown that the
proposed system can simultaneously decode multiple streams
of Ogg Vorbis encoded data in real time.

VII. ACKNOWLEDGMENT

 We are grateful to Dr. Narasimha B. Bhat for providing us
with opportunity to carry out this work at Manipal Dot Net
Pvt. Ltd. We also thank Stretch Inc., CA, USA.

VIII. REFERENCES

[1]. xiph.org Foundation, 'The Ogg Vorbis CODEC project',
http://www.xiph.org/ogg/vorbis
[2]. S Maeta, A Kosaka, A Yamata, T Onoye, T Chiba and I Shirakawa, C-
based Hardware Design of IMDCT Accelerator for Ogg Vorbis Decoder',
Proc. XII European Signal Processing Conference, 2004, pp 1361-1364.
[3]. P Kiatisevi, L Azuara, R Dorsch, H Wunderlich, 'Development of an
Audio Player as System-on-a-Chip using an Open Source Platform', Proc.
IEEE ISCAS, 2005, pp 2935-2938.
[4]. Stretch Inc, s6ArchitectureOverview.pdf, http://www.stretchinc.com
[5]. T Sporer, K Brandenburg and B Edler, 'The use of Multirate Filter Banks
for Coding of high quality Digital Audio'. Proc. 6th European Signal
Processing Conference, 1992, vol. 1, pp 211-214.

