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GPU-based Image Reconstruction for Real Time X-Ray Fluoroscopy 
with a Regular Detector Grid

Abstract

This paper describes a strategy to parallelize and implement in real-time the multi-plane tomosynthetic 
image reconstruction algorithm used in common x-ray fluoroscopy systems such as the Scanning Beam 
Digital  X-Ray (SBDX) system, on high performance computing platforms such as general purpose 
Graphical Processing Units (GPU). The authors contrast two different parallelizing schemata, namely, 
the detector centric and the pixel centric parallelization approaches under the specific assumption of a 
regular detector grid and separability of the x and y dimensions. In both of these schemes, the use of 
look-up  tables  (LUT)  helps  to  reduce  run  time  computations  but  requires  effective  memory 
management strategies. An optimal implementation of these schemes on GPUs also needs to maintain a 
high  level  of  achieved occupancy by setting  an appropriate  thread-block configuration.  The paper 
reports results of implementing the two parallelization schemes and associated optimizations on Nvidia 
GPUs  and  demonstrates  15  fps  performance  using  a  single  GeForce  GTX690  card.  The  paper 
concludes  that  the  pixel  centric  approach  has  better  arithmetic  intensity  and  superior  scalability 
properties which makes it ideal for use in multi-GPU systems.

1  Introduction

The Scanning Beam Digital X-Ray (SBDX) system represents a significant advance over conventional 
x-ray  fluoroscopy  systems  in  terms  of  reduction  of  radiation  exposure  to  patients  and  staff,  and 
improved SNR due to lesser detection of x-ray scatter [1,2,3]. This is achieved by restricting the x-ray 
beam to a small field of view and directing it to a small area detector. However, this means that the full  
field of view fluoroscopic images at multiple focal planes need to be digitally reconstructed from a 
number of smaller views detected by the detector – essentially a tomosynthetic procedure. The compute 
intensity  of  fluoroscopic  reconstruction  is  evident  from the  typical  detector  data  throughput  rates 
involved (30 Gbps) and the required floating point operations (1.5 TFLOPS).

Like  several  other  medical  imaging  algorithms,  there  are  important  aspects  of  fluoroscopic 
reconstruction that enable its parallelization and make it suitable for implementation on any parallel 
processing device. While current fluoroscopic systems are known to use custom-designed hardware 
based on  field programmable gate arrays (FPGA), systems based on off-the-shelf GPUs can potentially 
give improved performance while substantially reducing costs [4]. 

In prior applications of GPUs for various medical imaging applications, researchers have noticed that 
the  same  algorithm can  have  two  distinct  formulations  with  very  different  run  time  performance 
namely,  the  gather  and  scatter  formulations.  As  explained  in  [4],  '…  both  gather  and  scatter 
formulations produce the same output and have the same theoretical complexity. However, on the GPU, 
gather  operations  are  more  efficient  than  equivalent  scatter  operations  because  memory reads  and 
writes are asymmetric: memory reads can be cached and are therefore faster than memory writes ... 
Last, by writing data in an orderly fashion, gather operations avoid write hazards. Scatter operations 
require slower atomic operations to avoid such write hazards.'

Along similar lines, we show that the multi-plane tomosynthetic fluoroscopic image reconstruction also 
admits  two different  parallelizing  schemes,  namely  the  detector  centric  and  pixel  centric  schemes 
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which correspond to scatter and gather formulations respectively. We explore various aspects that lead 
to an effective implementation of these schemes – the arithmetic intensity of the parallelizing schemes, 
the use of look-up tables (LUT) to avoid repeated computations, different ways of managing the GPU's 
memory resources and maintaining a high level of achieved occupancy by choosing different thread-
block configurations for apportioning of the computations. Our experimental results reported in this 
paper compare the scalability of the two parallelization schemes and their performance on some of the 
recent GPUs from the Nvidia family.

The  modeling  of  detector  geometry  is  an  important  factor  influencing  the  quality  of  fluoroscopic 
images.  We have assumed that the detector elements are arranged on a 2D plane in a regular and 
rectangular  grid.  Real-world  detectors,  however,  have  a  slightly  irregular  3D structure  [2,5].  Our 
assumptions render the reconstruction problem separable in the x and y dimensions, which helps reduce 
memory bandwidth requirements substantially. We believe that the immense computational benefits of 
separability makes it an effective trade-off vis-à-vis image quality.

This paper does not consider the procedure of multi-plane compositing which follows the stage of 
multi-plane reconstruction and where the multiple reconstructed planes are combined to produce a best 
focus image [2]. The focus is on image reconstruction of individual planes. Multi-plane compositing 
will be considered in a future effort.

The rest of the paper is organized as follows – In the next section, we briefly describe the SBDX 
system. In section 3, we describe the tomosynthetic image reconstruction algorithm and derive the 
detector  centric  and  pixel  centric  formulations.  In  section  4,  we  provide  details  of  the  different 
computing  platforms,  the  programming  techniques  and  heuristics  that  have  been  applied  in  our 
experiments.  In  section  5,  we  present  the  run  time  results  on  different  GPUs  and  compare  their 
performance. Finally we present our conclusions and directions for future research. 

2  The SBDX System

The SBDX system [1,2] consists of a large area X-ray source that is spatio-temporally sampled using a 
multi-hole  collimator.  The  collimator  holes  restrict  the  emerging  x-ray  photons  to  those  directed 
towards the detector. The collimator holes in the SBDX system considered in this paper are arranged in 
the form of an 100x100 array.

The scanning technique used by the x-ray source can include many different collimator hole patterns 
and many different frame rates. For the purposes of this paper we shall assume that the scanning pattern 
involves one complete raster scan of the 100x100 holes per frame, and at a rate of 30 fps.

The x-rays emitted from a single collimator hole pass through the object (a human patient) and are 
subsequently detected by a small, distant detector. The detector considered in this paper is assumed to 
consist of an 8x4 array of CdTe tiles. Each tile, known as a detector hybrid, in turn is assumed to  
consist of an array of 20x20 detector elements giving an overall array of 160x80 detector elements. The 
detector hybrids are not all in the same plane but have a stepped arrangement. Furthermore, the detector 
elements in each hybrid are not always arranged in a regular, rectangular fashion. This implies that the 
actual detector configuration is slightly irregular and has a 3D structure [2,5].

Since both the source-detector distance and the patient-detector distance is large compared to the size 
of the detector, the 3D structure of the detector is insignificant and therefore it is reasonable to model 
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the detector as a flat array of detector elements. A further but less sanguine assumption is to model the 
detector elements as being located on a regular and rectangular grid. In the separable formulation which 
result from the above assumptions the influence of a detector element in the x direction is decoupled 
from that in the y direction. This decoupling can be exploited to reduce memory storage requirements 
substantially – from O(n2) to O(n). We believe that these assumptions are not overly restrictive and can 
produce quality fluoroscopic images in real world scenarios.

Each element of the detector array outputs an 8-bit number for each illumination from a collimator 
hole. The detector data is produced and made available for processing at the same rate at which the  
collimator array is illuminated by the x-ray source. This works out to a data rate of about 30 Gbps – 
(160x80 detector elements x 100x100 collimator holes x 30 fps x 8 bits).

3  The Tomosynthetic Image Reconstruction Algorithm

Figure 1. Basic Geometry of Tomosynthetic Image Reconstruction in the SBDX System

The image reconstruction algorithm considered in this paper is a basic  shift-and-add tomosynthesis 
described in [2]. The basic geometry of the reconstruction problem is shown in figure 1. The x-rays 
emitted from a collimator hole pass through the stack of focal planes and are detected by the detector 
array. In order to reconstruct an image at a focal plane, the detector array is back-projected onto the 
plane through simple ray tracing which creates a region of influence (ROI) for that particular collimator 
hole, on that plane. Tomosynthesis works by apportioning the detector data to pixels within the ROI. 
The final image at the focal plane is obtained by adding the contributions of all the shifted ROIs (from 
scanning the collimator array) to the pixels of the focal plane. A formal description of the algorithm is  
as follows:
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Figure 2. Local view of the reconstruction algorithm – 2x2 pixel grid and bilinear coefficients

The width and height of the collimator and the detector arrays is denoted by (Wc,  Hc) and (Wd,  Hd) 
respectively.  The collimator  and the  detector  arrays  are  indexed using indices  (cx,  cy)  and (dx,  dy) 
respectively. The collimator holes and detector elements are assumed to be located at integer locations 
corresponding to their indices respectively.

For a given collimator hole (cx, cy) and a detector element (dx, dy) that detects the x-rays emanating from 
it, the output of detector element (dx, dy) always influences a 2x2 pixel grid in each of the P focal planes 
through which the x-rays pass. The specific 2x2 pixel grid in each of the planes that is influenced by 
the combination of collimator hole (cx, cy) and detector element (dx, dy) is determined by the point of 
intersection of the line connecting the collimator hole and the detector element with the focal plane.

In particular, the four pixels of the 2x2 pixel grid within which the point of intersection lies, are the 
only ones that are affected by the combination of collimator hole (cx, cy) and detector element (dx, dy). 
Furthermore, the exact magnitude of the influence is given by weighing the output of detector element 
(dx, dy) using bilinear coefficients (fx, fy) corresponding to the location of the point of intersection within 
the 2x2 pixel grid. Figure 2 illustrates this local view of the algorithm.

The image reconstruction algorithm considered in this paper can be shown to be a special case of the 
one described in [2]. In [2], the region of influence of a single detector element or spread is denoted by 
r,  and the width of the pixel or  pitch is denoted by  p. If  one assumes,  without loss of generality, 
dimensionless quantities, and sets r = p = 1.0, one can easily derive our algorithm.

As defined in [2], as one moves from one collimator hole to an adjacent one, the ROI shifts by an 
integral number of pixels denoted by the parameter m. This is independent of the focal plane i.e. in any 
focal plane, shifting from one collimator hole to an adjacent one causes the ROI to shift by m pixels. 
Thus, without loss of generality, we can claim that a collimator hole (cx, cy) has a region of influence 
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(ROI) centered around (m*cx, m*cy) in any focal plane.

Figure 3.  Global view of the image reconstruction algorithm

What changes from one focal plane to another is the extent of the ROI centered on (m*cx, m*cy) for the 
given collimator hole. In other words, the specific 2x2 pixel grid and the weights corresponding to the 
four pixels that are affected by a specific collimator hole and detector element combination changes 
from one focal plane to next.  Since back-projection onto a plane is a linear operation,  the change 
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manifests as a linear scaling of the ROI and this scaling factor (also called reconstruction ratio in [2]) 
is denoted by the parameter n. Thus, the size of the ROI for a given focal plane is (n*Wd,  n*Hd) for any 
collimator hole. Varying n is thus synonymous with changing the focal plane of the image, and the P 
image planes are therefore reconstructed using P different n values. Figure 3 illustrates the global view 
of how the collimator and the detector arrays influence a given image plane through the parameters m 
and  n. In our experiments we have held the value of  m constant at 10 for each plane. However, the 
value of n is varied over a range from about 0.6 to 3.8 as one moves from one focal plane to another.

The local view from figure 2 and the global  view from figure 3 can be combined to produce the 
following set of equations that  describe the operation of the reconstruction algorithm. For a given 
combination of collimator hole (cx, cy) and detector element (dx, dy), the affected pixels of the 2x2 grid 
are given by

(Ix, Iy), ( Ix + 1, Iy), (Ix, Iy + 1) and ( Ix + 1, Iy + 1)

where

Ix = floor(m * cx + n * ( dx – (Wd – 1)/2)) (1)
Iy = floor(m * cy + n * ( dy – (Hd – 1)/2)) (2)

It follows that,

fx =  m * cx + n * ( dx – ( Wd – 1)/2) –  Ix (3)
fy =  m * cy + n * ( dy – ( Hd – 1)/2) –  Iy (4)

From equations (1) to (4), it is clear that the problem is separable i.e. the influence of back-projection 
in the  x dimension via  Ix and  fx depends only on the  x indices of the collimator holes and detector 
elements while the influence in the y dimension via Iy and fy depends only on their y indices.

Since m is a constant integer, we can rewrite equations (1) – (4) as

Ixoff  =  Ix – m * cx  =   floor(n * ( dx – (Wd – 1)/2)) (5)
Iyoff  =  Iy – m * cy  =  floor(n * ( dy – (Hd – 1)/2)) (6)
fx =  n * ( dx – (Wd – 1)/2)  –  floor(n * ( dx – (Wd – 1)/2)) (7)
fy =  n * ( dy – (Hd – 1)/2)  –  floor(n * ( dy – (Hd – 1)/2)) (8)

where (Ixoff, Iyoff)  denotes the offset  of pixel (Ix, Iy)  from the center of the ROI (m*cx,  m*cy).  From 
equations (5) and (6), it follows that the offset (Ixoff, Iyoff) of a pixel from the center of the ROI of a given 
collimator hole and which is affected by a given detector element, is independent of the pixel location 
and the collimator hole, and depends only on the location of the detector element. Similarly, equations 
(7) and (8) imply that the bilinear coefficients (fx,  fy) used to weigh the output of a given detector 
element, also depend only on the location of the detector element and are independent of the location of 
the pixel that is affected by the detector element as well as the given collimator hole.

3.1  Detector centric Parallelization

These  observations  form the  basis  for  a  detector  centric  parallelization  scheme in  which  a single 
parallel processing thread handles a  single detector element, apportioning it's measurement to the 
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neighborhood image pixels. The processing can be accelerated by constructing a look-up table (LUT) 
to encode for those computations that are repeated in different processing threads at different times. 
Using equations (5) – (8) the LUT encodes for each detector element the offsets of the pixels affected 
by it, and the bilinear coefficients that are used to weigh its output. Due to separability, it suffices to 
have two 1D LUTs, one indexed by dx and encoding Ixoff and fx and the other indexed by dy and encoding 
Iyoff and fy respectively. The total size of this pair of 1D LUTs is proportional to (Wd + Hd) and one such 
pair is needed for each of the focal planes being reconstructed.

3.2  Pixel centric Parallelization

Alternatively,  it  is possible to view the parallelization of the reconstruction algorithm from a pixel 
centric perspective.  From the point of view of a pixel, if the pixel lies within the ROI of a given  
collimator hole, it is likely, but is by no means certain, that it would be affected by the output of a  
detector element. In other words, while every pixel that is affected by a collimator hole lies within its  
ROI, not every pixel within the ROI of a collimator hole is necessarily affected. This is because as the 
focal plane changes and the value of  n increases, the ROI gets stretched which may result in some 
pixels being beyond the spread of any detector element (illustrated in figure 3). Conversely when the 
value of n decreases, the ROI shrinks and as a result, a pixel within the ROI can be affected by several 
detector elements. Since our detector elements are located on a regular grid, depending on the value of 
n, the number of detector elements affecting a particular pixel within the ROI can be either 0 or any 
power of 2 –  1, 2, 4 ….

It  is  possible,  therefore,  to  have  a  single  parallel  processing  thread  handle  a  single  pixel  and  to 
accumulate the measurements of all those detector elements that affect it. As in the detector centric case 
it  is  possible  to  build  a  LUT to  encode  for  all  those  computations  that  get  repeated  in  different 
processing threads at different times. The LUT from a pixel centric parallelization perspective has an 
entry for every possible offset within the ROI of a collimator hole for a given focal plane. Once again, 
separability allows us to decouple the x and y dimensions. Thus the LUT for x dimension is indexed by 
Ixoff and the entry indicates, using equation (5), whether the pixel that lies at the corresponding offset is  
affected by a detector element or not. If it is affected by a detector element, then it also stores, using 
equations (5) and (7), the x indices of the detector elements that affect it and the bilinear coefficients 
used to weigh their outputs. Similarly a LUT for the  y dimension can be constructed by substituting 
equations (6) and (8) in place of equations (5) and (7) respectively. Unlike the detector centric LUTs, 
the pixel centric LUTs have a different size for each focal plane of the image, which is n(Wd + Hd).

4  The Computing Platform and Programming

The detector centric and pixel centric parallelization schemes have been implemented on three Nvidia 
GPUs of the  Kepler family, namely the  GeForce GTX690, the Tesla  K10 and the Tesla  K20. The 
various architectural and compute features of these GPUs are given in table 1. All three GPUs are 
parallel throughput processors based on a single instruction multiple data (SIMD) architecture.

Comparing the three GPUs becomes complicated due to the fact that the GeForce GTX690 and the 
Tesla K10 have two GPUs on a single card, but the Tesla K20 has only one. As can be seen from table 
1, the Tesla K20 has the lowest GPU clock rate. However, it has the highest number of cores per GPU, 
the  largest  memory bus  width  and  the largest L2 cache which is shared among all the streaming 
multiprocessors in the Kepler architecture. The GeForce GTX690 has the highest memory clock rate. 
However since both the GeForce GTX690 and the Tesla K10 have two GPUs on the same card, they 
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have a larger number of cores overall.

Since all our computation is single precision floating point (SPFP), of particular interest to us is the 
SPFP compute capability of the three GPUs. The Tesla K20 has the highest SPFP compute capability  
compared to single GPUs of others. However the overall SPFP compute capability of the GeForce 
GTX690 and the Tesla K10 is higher due to them being dual GPU cards.

GPU 
Specification

Tesla K10
1 card 2 GPUs

Tesla K20
1 card 1 GPU

GeForce GTX690
1 card 2 GPUs

Number of cores 2 * 1536 2496 2 * 1536
GPU Clock rate (MHz) 745 704 1020
Memory Clock rate (MHz) 2500 2600 3004
Memory Bus Width (bit) 256 320 256
Maximum Number of threads per 
Multiprocessor

2048 2048 2048

Maximum Number  of threads per block 1024 1024 1024
Global Memory (GB) 2 * 4 5 2 * 2
Peak Single Precision Floating  Point 
Performance (TFLOPS) for card

4.58 3.52 5.62

Peak Double Precision Floating Point 
Performance (TFLOPS) for card

0.19 1.17 0.19

L2 Cache (bytes) 524288 1310720 524288
Shared Memory per block (bytes) 49152 49152 49152

Table 1. GPU Specifications

The programming has been done using the NVIDIA CUDA parallel programming model. CUDA is an 
extension of the C language, and enables parallel programming in the SIMD paradigm. CUDA provides 
APIs for launching functions (called kernels) on the GPU cores, copying data between the host CPU's 
memory and the GPU memory, and for using different types of memory on the GPU card. The same 
image reconstruction CUDA program was run on all the three GPUs, no specific optimizations were 
done for any of the GPU.

The detector measurements are stored in the GPU's texture memory in order to exploit its 2D locality 
based cache and independent texture hardware based access. At the start a kernel (the LUT generation 
kernel)  executed on the GPU generates the various LUTs for all the planes. During image 
reconstruction, the LUTs are stored in the shared memory for faster access. The image reconstruction 
kernel follows the LUT generation kernel and differs depending on the parallelization scheme. 

4.1 Image Reconstruction Kernel: Arithmetic Intensity

In the detector centric approach, a parallel processing thread handles a detector element, apportioning 
it's measurement to neighboring image pixels. The updating of the image pixels results in scattered 
writes to global memory leading to write contests. The considerably larger number of writes to global  
memory in the detector centric scheme is responsible for this kernel having poor arithmetic intensity – 
the  ratio  of  compute  operations  to  memory  operations  executed  by  a  thread.  Moreover,  it  is 
cumbersome to scale on multi-GPUs, as a post-processing step is necessary to merge the partial image 
pixels reconstructed by individual GPUs. 
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In the pixel centric approach, each parallel processing thread handles an image pixel, accumulating the 
contributions  of  neighboring  detector  measurements.  The  partial  pixel  updates  due  to  detector 
measurements are accumulated in a register and written to the global memory at the end. This reduces 
the  total  number  of  memory  writes  which  in  turn  reduces  write  contests  and  enhances  arithmetic 
intensity significantly. Also, by eliminating the need for a post-processing step, this approach becomes 
amenable to multi-GPU scaling.

FOR a THREAD reconstructing a pixel at (Ix, Iy)
COPY LUTs lut_det_loc, lut_ fx and lut_ fy into shared memory
DETERMINE coll_bnd_box Cxmin, Cxmax, Cymin, Cymax contributing to 

                        pixel at (Ix, Iy)

FOR each col_hol within (Cxmin, Cxmax) and (Cymin, Cymax)
COMPUTE pixel_offset from the center of the ROI of the col_hol
READ det_loc from LUT lut_det_loc stored at pixel_offset

IF det_loc has a valid element affecting pixel (Ix, Iy), THEN
READ bilinear coefficients fx, fy from LUTs lut_fx, lut_ fy stored at 

                                                pixel_offset
READ the detector element located at det_loc from texture memory
INCREMENT image pixels at (Ix, Iy),  (Ix+1, Iy), (Ix, Iy+1), 

                                                (Ix+1, Iy+1) using fx, fy and the detector data
ENDIF

ENDFOR
ENDTHREAD

Table 2. Pseudo code of the pixel centric parallelization scheme

Table 2 contains a pseudo code of the pixel centric parallelization scheme. From the pseudo code we 
can see that initially a block of threads populate the shared memory with LUTs containing bilinear 
coefficients and detector locations. Then, each thread computes a bounding box of collimator holes that 
affect the image pixel it represents. For each collimator hole in the bounding box, the thread identifies 
the detector elements influencing it  and uses the bilinear coefficients to weigh and accumulate the 
detector element's measurement. At the end of the loop, the accumulated image pixel is updated in the 
global memory. A number of heuristics have been used to speed up the processing of the pixel centric 
kernel. We describe some of them in the following subsections.

4.2  Using Separability to Skip Rows

Due to stretching of the ROI for values of n > 1.0, there exist image pixels that are not affected by any 
detector  elements  for  some collimator  holes.  In  particular,  since  our  detector  array  is  regular  and 
separable, if one collimator hole does not affect a given pixel (i.e. the bilinear weight corresponding to 
it is zero) in the y direction, then none of the collimator holes in the entire row that contains it, affect 
the pixel. This happens regularly for  n > 1.0 and allows us to skip entire rows of collimator holes 
within the bounding box during execution of a thread. This simple application of separability leads to a 
significant acceleration of the pixel centric image kernel on the GPU.
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4.3  Tuning the Thread-Block Configuration

The thread computations on the GPU is a cascade of arithmetic operations and memory read-writes, 
among many parallel threads. The GPU distributes arithmetic operations among the on-chip compute 
resources, while the memory access has to pass through a hierarchy of cache pipelines. The relative 
balance between compute and memory operations influences achieved occupancy which can critically 
affect overall GPU performance. Programmers employ the heuristic of changing the number of threads 
and thread blocks in order to arrive at a configuration of optimal achieved occupancy. This is a trial-
and-error method and in our case is constrained by the fact that the product of the thread counts and 
thread block counts must equal the total number of reconstructed pixels of all the planes (for the pixel 
centric scheme only). The results of this fine-tuning may differ for different GPUs, as individual GPUs 
work at different clock frequencies and have different amounts of compute resources.

4.4 Two Phase Pipelined Computation

In  real  world  scenarios,  the  detector  data  would  be  generated  continuously  and  will  need  to  be 
processed at the same rate. In order to simulate this process we have set up a two phase pipelined 
computation model using CUDA streams and two memory banks each for input and output data which 
allows overlapping data  transfers and GPU computations.  The data  transfers rely on asynchronous 
memory copy using the DMA protocol over the PCIe channel and do not interfere with the working of 
the CPU or the GPU.

The cycle of events in two phase computation is as follows: Initially a frame of detector data is copied 
from the host CPU memory to the GPU memory. The GPU then begins processing the detector data, 
and simultaneously the next frame of detector data is copied from the host to the GPU into a separate 
memory location. After completion of the data processing, the image pixels are copied to the host from 
the GPU, while the processing of the next frame of detector data begins on the GPU. As long as the  
cumulative time for transfer of detector and image pixel data is less than the time taken for processing 
of a frame of detector data there is no latency in the image reconstruction pipeline and the throughput  
equals the GPU compute time.

5  Experimental Results

The  image reconstruction  implementations  were  run  using  simulated  detector  data  and number  of 
planes P = 32. Each reconstructed plane was composed of 1000x1000 pixels, each pixel being a 32-bit 
floating point number. The detector measurements were simulated as 4-bit random data (range of 0 to 
15)  and  stored  as  an  8-bit  unsigned  character.  The  compute  intensity  can  be  calculated  from the 
detector centric formulation as follows – (8 multiplications + 4 additions) x 160x80 detector elements x 
100x100 collimator holes x 32 planes x 30 fps = 1.5 TFLOPS.

The GPU results were validated by comparing the pixels of the 32 image planes with those obtained 
from a sequential implementation on the CPU. The maximum error was found to be 0.012% and can be 
attributed to the differing sequence of multiplications and additions in the sequential and the parallel 
implementations, and consequently the errors that arise as a result of truncations during floating point  
computations.

In tables 3 and 4, we present the run times for the detector centric and the pixel centric parallelization 
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schemes respectively. Each row in the tables corresponds to a range of n used. The ranges that we have 
selected help illuminate interesting features of the algorithm. The first range of 0.6 to 2.25 is wide and 
most diverse because it involves both n < 1.0 as well as n > 1.0, and therefore the LUTs have to deal 
with situations where more than one detector element may contribute to a 2x2 grid of image pixels. The 
other ranges result in a maximum of one detector element contribution to a 2x2 grid of image pixels, 
but as the upper limit of n keeps increasing, the LUTs used in the pixel centric scheme become larger 
yet increasingly sparser.

Range of n Run time on GeForce GTX690 
(millisecond)

Run Time on Intel Quad core 
Q8400 (sec)

Speed Up

0.60 – 2.25 1029.64 394.85 383.5
1.00 – 1.50 1039.86 366.90 352.8
1.00 – 2.01 1003.45 387.36 386
1.00 – 3.82 966.57 443.21 458.5

Table 3. Reconstruction Run Times for Detector Centric Scheme

Range of n Run Time on GPU 
(millisecond)

Best case 
Speed Up

Tesla K10 
(2GPUs/card)

Tesla K20 
(1 GPU/Card)

GeForce GTX690 
(2 GPUs/card)

Single Dual Single Dual Single Dual
0.60 – 2.25 155.16 77.11 152.26 74.89 126.55 62.98 6269.5
1.00 – 1.50 147.10 73.18 145.33 71.60 111.02 54.32 6754.4
1.00 – 2.01 165.70 82.32 162.46 79.90 125.50 59.76 6481.9
1.00 – 3.82 227.84 95.66 223.60 109.23 174.94 80.94 5475.5

Table 4. Reconstruction Run Times for Pixel Centric Scheme

Kernel Configuration Single GPU Run Time (millisecond)
Threads Blocks Shared Memory (bytes) Tesla K10 Tesla K20 GeForce 

GTX690
999 (999, 32) 9990 155.18 152.72 117.21
333 (999 * 3, 32) 4995 166.35 125.64 135.98
320 (999 * 4, 32) 4800 162.79 132.66 131.37
256 (999 * 4, 32) 6400 160.71 115.43 131.43
224 (999 * 5, 32) 5600 166.88 127.42 131.43
205 (999 * 5, 32) 5125 162.88 130.84 133.18

Table 5. Reconstruction Run Times for Different Thread and Thread Block Configuration, 
n range: 0.6 – 2.25 

In these experiments the number of threads and thread blocks are kept constant for all ranges of n and 
for all the three GPUs considered. The detector centric scheme has been implemented only on a single 
GPU of the GeForce GTX690 since it is clear from the numbers that it is unlikely to be better than the 
pixel centric scheme. The pixel centric image reconstruction CUDA code on the other hand was run on 
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all the three GPUs in single and dual GPU modes. In the case of the GeForce GTX690 and the Tesla 
K10,  both  the  GPUs on their  cards  were used,  and in  the case of  the  Tesla  K20 two cards  were 
employed. In the dual GPU experiments, each plane was divided into two halves of size 500x1000 and 
reconstructed  separately  on  one  of  the  two  GPUs.  The  detector  arrays  necessary  for  individual 
reconstructions  were  copied  into  the  respective  GPU's  global  memories.  The  two phase  pipelined 
computation was implemented with dual GPUs and found to work with no additional latency.

In table 4, we report the run times of both single and dual GPU experiments and we can see that the run 
times in the case of dual GPU is half of that of the single GPU demonstrating that the implementation  
is scalable. Also the performance of the image centric scheme has been contrasted with that of a general 
purpose CPU and we can see a speed-up factor ranging from approximately 5400 to 6700 depending on 
the range of  n. For the diverse range of 0.6 to 2.25, a single  GeForce GTX690 card with two GPUs 
achieves 15 fps.

From table 4, we observe that the GeForce GTX690 outperforms both the Tesla K10 and the Tesla K20. 
One factor that explains this difference is the higher GPU clock rate of the GeForce GTX690 compared 
to the Tesla K10 and the Tesla K20. Another possible factor could be the error correcting code (ECC) 
option available  in  the Tesla  K10 and the Tesla  K20 to safeguard the memory against  corruption. 
Nvidia documents mention the slight hit in DRAM bandwidth when ECC option is used. We conducted 
the image reconstruction experiments by both enabling and disabling ECC, but found no change in the 
run-time performance.

From table 4, it also appears that the Tesla K20 despite having a higher single GPU SPFP compute 
capability compared to the other two GPUs, performs no better than a single GPU of the Tesla K10 and 
is worse than a single GPU of the GeForce GTX690. However, by tuning the number of threads and 
thread blocks, it is possible to improve the Tesla K20's performance. Table 5 presents the run times for 
a single GPU, by changing the thread-block configuration for the n value range of 0.6 to 2.25. The first 
two columns in  table  5 show the thread count  per  block and the number of blocks in  2D format 
respectively. As can be seen, the product of the threads and blocks approximate to the total number of 
reconstructed pixels i.e. 32 million.  As the number of threads in a block changes it also changes the 
number of LUT entries that need to be copied into the shared memory. This is reflected in the third  
column as the number of bytes copied into the shared memory from the LUTs by all the threads in a 
block.

The  fastest  run  time for  the  GeForce  GTX690 and the  Tesla  K10 are  117.21 ms  and  155.18 ms 
respectively  and  are  obtained  for  the  thread-block  configuration  shown  in  row  1.  The  compute 
architectures of the GeForce GTX690 and the Tesla K10 are the same albeit running at different clock 
frequencies, thus yielding different run times with the same thread-block configuration. The best run 
time for the Tesla K20 is 115.43 ms with the configuration shown in row 4. From this table it is clear 
that an appropriate thread-block configuration can raise the Tesla K20's performance to the same level 
as a single GPU on the GeForce GTX690 (the GeForce GTX690 still has an advantage over the Tesla 
K20 since it has two GPUs on the same card). However, we do not see a similar improvement in the 
case of the Tesla K10.

6  Conclusions

The multi-plane tomosynthetic image reconstruction algorithm used in the SBDX fluoroscopy system 
was parallelized along detector centric and pixel centric formulations corresponding to the scatter and 
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gather formulations of other medical imaging problems. They were implemented on three variants of 
Nvidia Kepler GPU – the  GeForce GTX690, the Tesla K10 and the Tesla K20. The implementation 
employed  various  heuristics  and  optimizations  –  LUTs  were  used  to  store  detector  locations  and 
bilinear coefficients and helped avoid repeated computations; shared and texture memory were used for 
effective memory management by storing different kinds of data; detector regularity and separability 
was leveraged to reduce the size of the LUTs as well  as reduce the number of computations; and 
achieved occupancy was improved by tuning the thread-block configuration.

The pixel centric parallelization scheme has better arithmetic intensity and was found to be superior in 
run time to the detector centric one by a large margin. Furthermore, it was found to be readily scalable 
onto dual GPU systems with no drop in performance and without posing any logistical difficulty. The 
performance was seen to scale linearly with the number of GPUs. The fastest implementation was seen 
in  the  case  of  the GeForce  GTX690 giving a  real  time performance of  more than  15 fps  for  the  
reconstruction of 32 planes each comprising of 1 million image pixels. We can conclude therefore, that 
partitioning  the  image  into  two  halves  and  reconstructing  them  simultaneously  on  two  GeForce 
GTX690 boards would double the frame rate to 30 fps.

An important assumption made at the beginning of this work is the regularity of the detector array. The 
regularity assumption translates into separability of the computations along the  x and  y dimensions 
which in turn allows for much smaller LUTs than would be needed. However the actual detector array 
topology can deviate from this assumption and therefore future developments must figure out a way to 
extend the parallelization schemes (in particular the pixel centric scheme) to the case of an irregular 
detector topology.

Some of the other directions for taking this work further include the multi-plane compositing procedure 
that reduces the multiple planes to a single image viewable by a medical professional. Also, the ability 
to  change  depth  and  location  of  the  reconstructed  planes  by  changing  the  range  of  n will  be  an 
important addition for real world applications of fluoroscopy.
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