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Abstract: Fisheye lenses [1] have very large wide-angle views, so fewer cameras are needed to 
generate  a  panoramic  view by  stitching  multiple  images.  However,  the  stitching  of  fisheye 
images is a non-trivial task as fisheye images suffer from severe distortion and correction can 
involve  intensive  computations  and  image  processing.  This  paper  discusses  an  innovative 
architecture for the real-time generation of panoramic views by stitching multiple fisheye images 
on an FPGA when basic camera parameters  (field of view and focal length)  are known. The 
method involves the one time computation of a look-up table to map a fisheye image onto a 
cylindrical  compositing surface followed by an automatic similarity-based registration of two 
such images leading to a seamless stitch. The method is implemented on a Nios® II soft-core 
embedded processor  and the  result  of  processing  video  feeds  from two OmniVision  fisheye 
cameras is presented.

Introduction
Fisheye  lenses  achieve  extremely  wide  fields  of  view (FOVs)  by  foregoing  the  perspective 
(rectilinear)  mapping  common  to  non-fisheye  lenses  and  opting  instead  for  certain  special 
mappings. In our earlier work [2], we have described different fisheye mappings (e.g., the linear 
scaled projection mapping) and developed a flexible architecture for correcting fisheye images to 
perspective versions. As a result of “Barrel Distortion” fisheye images do not preserve the most 
important feature of rectilinear images, that of mapping straight lines in the scene onto straight 
lines in the image. 

                                       
Figure 1: Fisheye Image

Panoramic views are characterized by very large horizontal FOVs and they typically are used to 
generate 360° views of scenes such as city skylines. Since fisheye images have large FOVs they 
make ideal candidates for generating panoramic views. However, generating panoramic views 
from fisheye images is not a simple matter of correcting the images to generate corresponding 
perspective images.

Indeed perspective images cannot be panoramic, because objects at the edges of such images are 
stretched as a result of the perspective mapping. This stretching, known as perspective distortion, 
becomes more severe as one gets further away from the principal axis. Generating panoramic 



views from perspective  images  therefore requires  that  several  perspective images  with small 
FOVs (to minimize perspective distortion) be stitched together along the horizontal direction. So 
one way to generate panoramic views is to correct the fisheye images to perspective versions and 
then stitch them. However, since the perspective images themselves need to be of small FOV, 
this solution cannot take advantage of the wide-angle properties of fisheye cameras.
An  alternate  solution  is  to  directly  stitch  fisheye  images  and  generate  a  panoramic  view. 
However this requires a special correction, different from the one that corrects a fisheye image to 
a  perspective  image.  This  paper  describes  this  special  correction  which  is  motivated  by the 
desirable  properties  of panoramic  views.  First  note that  while  a panoramic view has a large 
horizontal  FOV, its vertical  FOV need not be large.  This implies that  in order to generate  a 
panoramic view, fisheye images are to be corrected in such a way that they show little or no 
perspective distortion in the horizontal direction, while admitting perspective distortion in the 
vertical direction. 

Algorithm Description
A fisheye  image is  formed when rays  entering a pinhole camera are incident  on a spherical 
surface of radius equal to the focal length of the camera. On the other hand, a perspective image 
is formed when the rays are incident on a plane whose distance from the pinhole is equal to the 
focal length of the camera. In order to correct the fisheye image such that it shows no perspective 
distortion  in  the  horizontal  direction,  the  incident  surface  must  be  circular  in  the  horizontal 
direction. Since perspective distortion in the vertical direction is admissible, the incident surface 
can be planar in the vertical direction. Assuming that the incident surface is a vertical cylindrical 
with a radius equal to the focal length would satisfy these requirements. The panoramic view is 
obtained by "unrolling" the image formed on the cylindrical surface (known as a compositing 
surface)  and  stitching  it  with  similar  images  obtained  from  other  fisheye  cameras.  The 
application assumes that the objects in the scene to be stitched are sufficiently far away from the 
camera, so that stereographic disparity is negligible.

Assume that  the principal  axis  of the camera is  along the z-axis,  the horizontal  and vertical 
directions correspond to the x and y-axes respectively. Let the ray entering the camera make an 
angle θ with the principal axis and its projection on the x-y plane make an angle φ with the x-
axis, as shown in Figure 2. On passing through the pinhole the ray is incident on a cylindrical 
surface whose radius is equal to the focal length f and whose axis lies along the y-axis. Let (xc, 
yc,  zc) be the coordinates of the point at which the incident ray impinges on the cylinder.  It 
follows that the point (xc, yc, zc) depends on (f, θ, φ) in the following manner.
                                   

  



The coordinates of the panoramic (unrolled) image (xq, yq) corresponding to (xc, yc, zc) are given 
by                                             

 (4) 
 

                                   
Figure 2 Projecting onto cylindrical surface to produce panormic image

Assuming  that  the  camera  uses  the  linear  scaled  projection  for  its  mapping  function,  the 
coordinates of the fisheye image (xf, yf) corresponding to (xc, yc, zc) are given by

(6)
                                 

The correction that we are seeking follows by eliminating θ and φ from the above equations (4 -  
7). This gives us the following relationship between the coordinates of the panoramic view and 
the fisheye image



Stitching Fisheye Images using LUT
Equations (8) and (9) allow us to map every pixel in the corrected image to a unique pixel in the 
input  image.  The  corrected  fisheye  image  shows no  perspective  distortion  in  the  horizontal 
direction. If we have a circular fisheye image these equations are enough to give us a panoramic 
view  with  a  180°  FOV.  However,  if  we  don't  have  circular  fisheye  images  or  if  we  want 
panoramic  views with an FOV greater  than 180°,  then we need to  stitch  two or  more  such 
images.

Stitching the images captured by two or more cameras requires that the images be registered to 
determine the region of overlap. In our case, we are concerned with images from two or more 
identical  cameras whose principal axes all  lie in the same horizontal  plane. Furthermore,  the 
cameras are separated by a small distance and rotated with respect to each other. Assuming that 
all the objects in the scene are sufficiently far away, this situation can be modeled as one where 
the different images are captured by the rotation along a vertical axis of a single camera. Under 
these assumptions, the correction represented by equations (8) and (9) transforms the images (by 
mapping them onto a cylindrical  surface) into horizontal  translations of each other. Thus the 
problem of image registration is reduced to merely figuring out the horizontal shift that aligns 
one image with another, after correction.

However,  in  practice  due  to  errors  in  camera  alignment,  it  is  likely  that  mere  horizontal 
alignment is insufficient for exact image registration. Therefore in addition to a horizontal shift 
we also determine a vertical shift (if any) that might be necessary for exact alignment. A simple 
similarity-based  method  (see  [4] for  details)  to  determine  the  registration  parameters  (the 
horizontal and vertical shifts) that align the images with each other.

Once the parameters for registering the corrected fisheye images are known, equations  (8) and 
(9) (by suitably translating (xq, yq) by the horizontal and vertical shifts) are used to directly map 
every  pixel  of  the  output  stitched  image  to  one  of  the  multiple  input  images.  Clearly  this 
mapping is independent of the contents of the images, but depends only on the characteristics of 
the cameras (including the FOV and the resolution of the input image), the display (including the 
display resolution) and the registration parameters. Therefore the mapping can be determined 
through a one-time computation at the start and stored as a LUT. In our system for stitching 
fisheye images, the computation of the LUT proceeds in a two-step fashion: In the first step, the 
LUT  for  correcting  a  single  image  is  computed  off-line  (since  this  does  not  require  the 
knowledge of the registration parameters) using equations (8) and (9) and stored in the memory. 
In the second step, at the start of the system, images are captured by all the cameras in the system 
and  corrected  using  the  stored  LUT.  These  corrected  images  are  then  registered  and  the 



registration parameters computed. Using the registration parameters and the stored LUT, a final 
LUT for directly stitching fisheye images is generated.

Note that although equations (8) and (9) can produce real numbers for the input pixel locations, 
the LUT is not required to store floating point values, since we use the 9-point interpolation 
method which allows for efficient pixel interpolation and fixed point representations needed for 
an FPGA based implementation.  The reader  is  referred to our earlier  work [2],  where these 
aspects have been described in considerable detail.

Design Implementation
This  section discusses the implementation  of fisheye  image stitching using devices  from the 
Altera® Cyclone® FPGA series and the Nios® II soft-core embedded processors. 

Figure 3 System block diagram

The Nios II architecture is a RISC soft-core architecture, which is implemented entirely in the 
programmable logic and memory blocks of Altera FPGAs, and is capable of handling a wide 
range of embedded computing applications, from DSP to system control. The soft-core nature of 
the  Nios  II  processor  lets  the  system designer  specify  and generate  a  custom Nios  II  core, 
tailored  for  his  specific  application  requirements.  Altera’s  Nios II  Embedded Evaluation  Kit 
(NEEK) is used as the development platform. The architecture is based on the following: a Nios 
II  soft-core  embedded  processor,  a  Bitec  Quad  Video  Input  module,  an  I2C  configuration 



module, a DDR-SDRAM controller, and a LCD controller. In Figure 3, the different modules 
present external to the Cyclone III FPGA are shown.

Results and Conclusion
Currently the system described above is used to capture the video feeds coming from two fisheye 
cameras. After a one time registration procedure to determine the registration parameters, the 
resultant image sequences are stitched using the LUT and the stitched image is displayed on a 
LCD screen at a resolution of 1024 × 768. Currently using Nearest Neighbor interpolation and 
Nine point Interpolation the system runs at around 7 and 4 frames per second respectively. An 
example stitched image of an outdoor scene produced by the above system is shown in Figure 5 
with the input frames shown in Figure 4.

Using  FPGAs  and  soft-core  embedded  processor  technology,  this  paper  presented  a  novel 
architecture  for  real  time  stitching  of  fisheye  images  and generating  panoramic  views.  This 
architecture is flexible, scalable, and makes efficient use of the FPGA’s resources. Because the 
architecture’s Nios II processor is versatile and powerful enough to take on additional embedded 
processor functions, this technology is ideally suited for use in applications where panoramic 
views are used, such as automotive rear-view cameras and others. 

Figure 4 Input Images

Figure 5 Stitched Image
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